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Abstract: There has been much interest in copulas, which are known to provide a flexible tool for analyzing the 

dependence structure among random variables. Dependence relations must be dynamic rather than static in nature. 

However, copulas are useful mainly for static matters; their definitions themselves do not contain time variables. Thus 

we introduce evolving copulas, which transform through time autonomously as governed by recurrence relation. 
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1. Introduction 

Dependence relations among random variables are one of the most important subjects for probability and statistics 

study. Analyzing dependence structures is crucial from both theoretical and applied viewpoints. Recently, members of 

the financial sector, like insurance companies and their regulators, have recognized that it is critical to manage these risks 

in a sophisticated way, that is, quantitatively. Quantitatively measured risks play a central role in this management 

framework. These entities face many kinds of risks, and the relations between them are very complicated. Thus, it is 

important to reflect the dependence relations to measure the risks quantitatively: the more dependence there is among 

risks, the less aggregated the risks are. See Yoshizawa, Y. [19], [20]. 

Linear correlation is often recognized as a satisfactory measure of dependence in risk management. However, it 

cannot capture the non-linear dependence relations that exist among many risk factors. See Embrechits, P. et al. [3]. 

What expresses the dependence relations among risk factors? If we capture a multivariate joint distribution of all the risk 

factors, we can recognize their dependence structure probabilistically or statistically. 

 For this reason, there has been much interest in a copula. A copula links multivariate joint distribution 

and univariate marginal distributions. Copulas are often employed to investigate the dependence structure 

among random variables. The fundamental theorem of copulas, “Sklar’s theorem,” first appeared in 1959. See 

Schweizer, B., & Sklar, A. [15], and Sklar, A. [16]. This elegant theorem claims that all multivariate 

distributions have copulas, and that copulas are used in conjunction with univariate distributions to construct 

multivariate distribution. As for the study of copulas, Free, E.W. et al. [4] and Tsukahara, H. [18] provide 

useful introductive reviews. Nelsen, R.B. [14] wrote the excellent standard textbook, providing a systematic 

development of the theory of copulas, particularly bivariate copulas. Moreover, McNeil, A. J. et al. [12] introduce 

copulas theoretically and practically, examining quantitative risk management for financial sectors. Copulas have been 

extensively studied and applied in a wide range of areas concerning dependence relations, because of their flexibility. See 

Breymann, W. et al. [1], Genest, G. et al. [5], and Goorbergh, R.W.J. et al. [6].We summarize the basic concept of 

copulas and rank correlations in Section 2. 

Copulas are useful mainly for static matters; their definitions themselves do not contain time variables. Mikosch, T. 

[13] suggests, “Copulas do not fit into the existing framework of stochastic processes and time series analysis; they are 

essentially static models and are not useful for modeling dependence through time”. However a few exceptions exist: 

copulas and the markov process, as in Darsow, W.F. et al. [2], and dynamic copulas, as in Patton, A.J. [17]. In these 

articles copulas and Markov processes can be used to analyze the dependence relations between markov processes at 

different times, and dynamic copulas involve the development of dynamic time series models for financial return data 

using conditional copulas.  

It is well known that rank correlations, one of the prevailing measures of dependence, are derived only by copulas. 

That is to say, copulas determine rank correlations. Therefore, it is natural to analyze only copulas in the study of 

transformations of dependence structures through time. As a first step, we start to investigate how copulas transform, and 

if they evolve in accordance with the heat equation, which is one of the basic partial differential equations used to 
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describe dynamic movements. We already studied the evolution of bivariate copulas in continuous and discrete processes, 

and summarize them in Section 3. 

However the evolution of copulas is not versatile; it is restricted to events whose essential dependences do not 

fluctuate but transform monotonically. The evolution of copulas fits with events where dependence decreases. In this 

paper, we extend the evolution of bivariate copulas in discrete processes to the generalized evolution of copulas, which is 

governed by past copulas asymmetrically weighted by coefficients. We propose a prototype of the generalized evolution 

of bivariate copulas in Section 4, and comment on their expected collaboration with Artificial Intelligence (AI) in Section 

5. We hope the generalized evolution of copulas fits into various transformations of dependence structures, such as 

rapidly strengthening dependences, becoming independent smoothly and so on.    

 

 

2. Copulas and rank correlation 

In this section, as an introduction, we summarize basic concept of copulas and rank correlations. 

 

2.1 Basic concept of copulas 

We marshal the basic concepts and properties of bivariate copulas for the preparation of the subsequent sections. 

We illustrate the definition of bivariate copulas; describe Sklar’s theorem, which plays a central role in copula theories.  

The bivariate copulas are defined by some conditions described in the following (1) and (2). The property (1) is called 

2-increasing condition, and the properties (2) are boundary conditions. 

  

Copula. Bivariate copula is a function 𝐶(𝑢, 𝑣) from 𝐼2 to 𝐼, which is defined by the following conditions 

2-increasing condition; 

𝐶(𝑢2, 𝑣2) −  𝐶(𝑢2, 𝑣1) −  𝐶(𝑢1, 𝑣2) +  𝐶(𝑢1, 𝑣1) ≥ 0,                                      (1) 

for  (𝑢𝑖, 𝑣𝑗) ∈ 𝐼2 (𝑖, 𝑗 = 1,2), 𝑢1 ≤ 𝑢2 , 𝑣1 ≤ 𝑣2 .           

Boundary conditions; 

                𝐶(𝑢, 0) = 𝐶(0, 𝑣) = 0,                                                                                            (2) 

              𝐶(𝑢, 1) = 𝑢  and  𝐶(1, 𝑣) = 𝑣.                                                                                     

 

The following Sklar’s theorem is the core theory among various copula theories. Thanks to this theorem we can 

construct multivariate distribution by coupling univariate marginal distributions.  

 

Sklar’s theorem. Let H be a bivariate joint distribution function with marginal distribution function F and G; that is  

lim
𝑦→∞

𝐻(𝑥, 𝑦) = 𝐹(𝑥) = 𝑢    and    lim
𝑥→∞

𝐻(𝑥, 𝑦) = 𝐺(𝑦) = 𝑣                                              

Then there exists a copula, which is uniquely determined on Ran F × Ran G such that 

    𝐻(𝑥, 𝑦) = 𝐶 (𝐹(𝑥), 𝐺(𝑦)) = 𝐶(𝑢, 𝑣).                                                                          (3) 

Conversely, if C is a copula and F and G are distribution functions, then the function H defined by (3) is a bivariate joint 

distribution function with marginal distribution functions F and G. 

 

There are copulas for sample data, which are called empirical copulas. Empirical copulas are used for evolution of 

copulas in discrete processes. We explain empirical copulas, empirical copula frequency functions and the relation 

between them with reference to Nelson, R.B. [14].  

 

Empirical copulas. Let  {𝑥𝑘 , 𝑦𝑘}𝑘=1
𝑛  denote a sample with size n from a continuous bivariate distribution. The empirical 

copulas   𝐶𝑛 is given by 

     𝐶𝑛 (
𝑖

𝑛
,

𝑗

𝑛
) =

number of pairs (𝑥, 𝑦)in sample with 𝑥 ≤ 𝑥(𝑖), 𝑦 ≤ 𝑦(𝑗)

𝑛2
,             (4) 

The empirical copula frequency function 𝑐𝑛 is given by  
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𝑐𝑛 (
𝑖

𝑛
,

𝑗

𝑛
) = {

1

𝑛
,   𝑖𝑓 (𝑥(𝑖), 𝑦(𝑗)) is an element of the sample,

0,    otherwise                                                             
                                        

where 𝑥(𝑖) and 𝑦(𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛, denote order statistics from the sample. 

Furthermore the relation between 𝐶𝑛 and 𝑐𝑛 is deduced by the definition as 

  𝐶𝑛 (
𝑖

𝑛
,

𝑗

𝑛
) = ∑ ∑ 𝑐𝑛 (

𝑝

𝑛
,
𝑞

𝑛
)

𝑗

𝑞=1
,

𝑖

𝑝=1
 and                                                                 (5) 

         𝑐𝑛 (
𝑖

𝑛
,

𝑗

𝑛
) = 𝐶𝑛 (

𝑖

𝑛
,

𝑗

𝑛
) − 𝐶𝑛 (

𝑖 − 1

𝑛
,

𝑗

𝑛
) − 𝐶𝑛 (

𝑖

𝑛
,
𝑗 − 1

𝑛
) + 𝐶𝑛 (

𝑖 − 1

𝑛
,
𝑗 − 1

𝑛
).              

 

 

2.2 Basic concept of rank correlations 

Rank correlations are a sort of dependence measures for two variables, and their special feature is that they do not 

depend on marginal distributions, but depend only on their copulas. That is to say, copulas determine rank correlations 

We introduce Kendall’s tau (𝜏) and Spearman’s rho (ρ), which are typical rank correlations. Their definitions, their 

popular version derived by copulas and their discrete versions are as follows. 

 

Kendall’s tau. Kendall’s tau for a pair (𝑋, 𝑌) is the probability of concordance minus the probability of dis- concordance. 

Kendall’s tau is defined as 

                                    𝜏𝑋,𝑌 ≔  𝑃[(𝑋1 − 𝑋2)(𝑌1 − 𝑌2) > 0] − 𝑃[(𝑋1 − 𝑋2)(𝑌1 − 𝑌2) < 0],            

where (X1 , Y1) and (X2 , Y2) are independent and identically distributed random vector with joint distribution. 

Moreover the popular version of Kendall’s tau is derived using only copula as 

 𝜏𝑋,𝑌 = 4 ∬ 𝐶(𝑢, 𝑣)𝑑𝐶(𝑢, 𝑣) − 1,
𝐼2

                                                                                                                (6) 

where 𝑢 and 𝑣 are uniform random variables, and their discrete version are derived by solely empirical copula as 

2𝑛

𝑛 − 1
∑ ∑ ∑ ∑ [𝑐𝑛 (

𝑖

𝑛
,

𝑗

𝑛
) 𝑐𝑛 (

𝑝

𝑛
,
𝑞

𝑛
) − 𝑐𝑛 (

𝑖

𝑛
,
𝑞

𝑛
) 𝑐𝑛 (

𝑝

𝑛
,

𝑗

𝑛
)]

𝑗−1

𝑞=1

𝑖−1

𝑝=1

𝑛

𝑗=2
                             (7)

𝑛

𝑖=2
 

  =  
2𝑛

𝑛 − 1
∑ ∑ [𝐶𝑛 (

𝑖

𝑛
,

𝑗

𝑛
) 𝐶𝑛 (

𝑖 − 1

𝑛
,
𝑗 − 1

𝑛
) − 𝐶𝑛 (

𝑖

𝑛
,
𝑗 − 1

𝑛
) 𝐶𝑛 (

𝑖 − 1

𝑛
,

𝑗

𝑛
)].  

𝑛

𝑗=2
                    

𝑛

𝑖=2
 

 

Spearman’s rho. Spearman’s rho for (𝑋1, 𝑌1) and (𝑋2, 𝑌3) is proportional to the probability of concordance minus the 

probability of dis-cordance. Spearman’s rho is defined as 

               𝜌𝑋,𝑌: = 3(𝑃[(𝑋1 − 𝑋2 )(𝑌1 − 𝑌3) > 0] − 𝑃[(𝑋1 − 𝑋2 )(𝑌1 − 𝑌3) < 0]),                                                    

where (𝑋1, 𝑌1), (𝑋2, 𝑌2) and (𝑋3, 𝑌3) are independent and identically distributed random vectors with a common joint 

distribution functions. 

The well-known version of Spearman’s rho is derived only by copula as  

    𝜌𝑋,𝑌 = 12 ∬ 𝑢𝑣 𝑑𝐶(𝑢, 𝑣) − 3
𝐼2

= 12 ∬ 𝐶(𝑢, 𝑣)𝑑𝑢𝑑𝑣 − 3,
𝐼2

                                                             (8) 

where 𝑢 and 𝑣  are uniform random variables, where 𝑢 and 𝑣 are uniform random variables, and their discrete version 

is derived by solely empirical copula as 

     
12

𝑛2 − 1
∑ ∑ [𝐶𝑛 (

𝑖

𝑛
,

𝑗

𝑛
) −  

𝑖

𝑛
∙

𝑗

𝑛
]

𝑛

𝑗=1

𝑛

𝑖=1
 .                                                                                      (9) 
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3. Evolution of copulas 

In this section, we summarize continuous evolution of bivariate copulas and discrete evolution of bivariate copulas. 

The reason we adopt the heat equation to evolve copulas is as follows. 

a) Rank correlations, one of the prevailing measures of dependence, are derived only by copulas. That is to say, 

copulas determine rank correlations. Thus it is natural to analyze only copulas in the study of transformations of 

dependence structures through time. 

b) The object of our study is autonomous movements of dependencies. The heat equation is one of the basic 

partial differential equations used to describe dynamic autonomous movements. Therefore we adopt it as a first step. 

 

3.1 Evolution of copulas in continuous processes 

We proved the existences and solutions of evolution of copulas in continuous processes, and their convergence to 

the product copula. Moreover we proved that rank correlations of evolution of copulas converge to zero exponentially as 

𝑡 → ∞. See Yoshizawa,Y.[23], Yoshizawa, Y., & Ishimura, N. [21] and Ishimura, N., & Yoshizawa, Y. [7],[8].  

 

Continuous evolution of copulas. For any bivariate copula 𝐶0(𝑢, 𝑣), there exists a unique family of time dependent 

bivariate copula {𝐶(𝑢, 𝑣, 𝑡)}𝑡≥0, which satisfies the heat equation 

 

∂𝐶

∂𝑡
(𝑢, 𝑣, 𝑡) = (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝑐(𝑢, 𝑣, 𝑡),                                                                                      (10) 

for  (𝑢, 𝑣, 𝑡) ∈ 𝐼2 × (0, ∞), 𝑤ℎ𝑒𝑟𝑒 𝐶(𝑢, 𝑣, 𝑡) = 𝐶0(𝑢, 𝑣)    𝑜𝑛  (𝑢, 𝑣) ∈ 𝐼2.                

The solution of the partial differential equation (10) is  

𝐶(𝑢, 𝑣, 𝑡) = 𝑢𝑣 + 4 ∑ 𝑒−π2(𝑚2+𝑛2)𝑡 sin 𝑚π𝑢 sin 𝑛π𝑣 𝐾(𝑚, 𝑛) ,

∞

𝑚,𝑛=1

                                  (11) 

where 𝐾(𝑚, 𝑛) = ∬ sin 𝑚π𝜉 sin 𝑛π𝜂  (𝐶0(𝜉, 𝜂) − 𝜉𝜂)𝑑𝜉 𝑑𝜂
𝐼2 . 

 

Convergence to the product copula. Evolution of bivariate copulas converge to the product copula, which means 

independences between variables, as 

  lim
𝑡→∞

𝐶(𝑢, 𝑣, 𝑡) = 𝛱(𝑢, 𝑣)     uniformly on (𝑢, 𝑣) ∈ 𝐼2,     where    𝛱(𝑢, 𝑣) ∶= 𝑢𝑣.          (12) 

 

Rank correlation. Rank correlations are a sort of dependence measures, and Kendall’s tau and Spearman’s rho are typical 

rank correlations. Their special feature is that they do not depend on marginal distributions, but depend only on their 

copulas. Furthermore rank correlations, Kendall’s tau (𝜏𝐶𝑡
) and Spearman’ rho (ρ𝐶𝑡

), of evolution of copulas 𝐶(𝑢, 𝑣, 𝑡), 

converge to zero exponentially as 𝑡 → ∞. 

 

 

3.2 Evolution of copulas in discrete processes 

In general, it is difficult to solve partial differential equations analytically; therefore, numerical approaches are often 

applied in practice, especially where analytical solutions do not exist. Moreover, numerical analysis is suitable for 

computer calculation. 

Therefore we studied and created the following discrete evolution of bivariate copulas which satisfy the following 

discrete version of the heat equation. See Yoshizawa,Y.[23] and Yoshizawa, Y., & Ishimura, N.[22]. 

Let 𝑁 ≥ 0 and 0 < ℎ ≤ 1, we put △ 𝑢 =△ 𝑣 ∶=
1

𝑁
= 𝑀, △ 𝑡 ∶= ℎ,  𝜆 ∶=

△𝑡

(△𝑢)2 =
△𝑡

(△𝑣)2 = ℎ𝑁2, and  

𝑢𝑖 ∶= 𝑖 △ 𝑢 =
𝑖

𝑁
, 𝑣𝑗 ∶= 𝑗 △ 𝑣 =

𝑗

𝑁
, for 𝑖, 𝑗 = 0,1, ⋯ , 𝑁.  

At any {(𝑢𝑖 , 𝑣𝑗)}
𝑖,𝑗=0,1,2,⋯,𝑁

 , the value 𝐶𝑖,𝑗
𝑛 ∶= 𝐶𝑛(𝑢𝑖 , 𝑣𝑖) is governed by the system of the difference equation 

 
𝐶𝑖,𝑗

𝑛+1 − 𝐶𝑖,𝑗
𝑛

△ 𝑡
=

𝐶𝑖+1,𝑗
𝑛 − 2𝐶𝑖,𝑗

𝑛 + 𝐶𝑖−1,𝑗
𝑛

(△ 𝑢)2
+  

𝐶𝑖,𝑗+1
𝑛 − 2𝐶𝑖,𝑗

𝑛 + 𝐶𝑖,𝑗−1
𝑛

(△ 𝑣)2
,                for 𝑖, 𝑗 = 0,1, ⋯ , 𝑁 − 1,       
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where  𝐶𝑖,𝑗
0 = 𝐶0(𝑢𝑖 , 𝑣𝑗) ∶= 𝐶0(𝑢𝑖 , 𝑣𝑗) is an initial copula,  together with the boundary conditions as  𝐶𝑖,0

𝑛 = 𝐶0,𝑗
𝑛 =

0,   𝐶𝑖,𝑁
𝑛 = 𝑢𝑖 , 𝐶𝑁,𝑗

𝑛 = 𝑣𝑗 ,   for 𝑖, 𝑗 = 0,1, ⋯ , 𝑁,    and the constrain 0 ≤ λ ≤
1

4
. The above deference equation is rewritten 

as 

  𝐶𝑖,𝑗
𝑛+1 = (1 − 4𝜆)𝐶𝑖,𝑗

𝑛 + 𝜆(𝐶𝑖+1,𝑗
𝑛 + 𝐶𝑖−1,𝑗

𝑛 + 𝐶𝑖,𝑗+1
𝑛 + 𝐶𝑖,𝑗−1

𝑛 )                         (13) 

The image of the deference equation (13) is shown in Figure 1. 

Furthermore we define the interpolation as 

𝐶𝑛(𝑢, 𝑣) ∶= 𝐶𝑖,𝑗
𝑛 +

𝐶𝑖+1,𝑗
𝑛 −𝐶𝑖,𝑗

𝑛

𝑢𝑖+1−𝑢𝑖
(𝑢 − 𝑢𝑖) + 

𝐶𝑖,𝑗+1
𝑛 −𝐶𝑖,𝑗

𝑛

𝑣𝑗+1−𝑣𝑗
(𝑣 − 𝑣𝑗)    +  

𝐶𝑖+1,𝑗+1
𝑛 −𝐶𝑖+1,𝑗

𝑛 −𝐶𝑖,𝑗+1
𝑛 +𝐶𝑖,𝑗

𝑛

(𝑢𝑖+1−𝑢𝑖)(𝑣𝑗+1−𝑣𝑗)
(𝑢 − 𝑢𝑖)(𝑣 − 𝑣𝑗),        (14)  

for 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1, 𝑣𝑗 ≤ 𝑣 ≤ 𝑣𝑗+1 and (𝑢, 𝑣) ∈ 𝐼2.     

 

Figure 1. Imagae of deference equation 

 

Discrete evolution of bivariate copulas. For any initial copula  𝐶0 , there exists a sequence of copula 

{𝐶𝑛(𝑢, 𝑣)}𝑛=0,1,2,⋯      on (𝑢, 𝑣)   ∈ 𝐼2,which satisfy the system of difference equation at every {(𝑢𝑖, 𝑣𝑗)}
𝑖,𝑗=0,1,2,⋯,𝑁

 and 

the above interpolation. We can call these copulas 𝐶𝑛(𝑢, 𝑣) as evolution of bivariate copulas in discrete processes, which 

satisfy 2-increasing condition (1) and boundary conditions (2). 

 

Convergence to the product copula. We proved that discrete evolution of copulas 𝐶𝑛(𝑢, 𝑣) converge to the product 

copula 𝛱(𝑢, 𝑣) = 𝑢𝑣  uniformly on 𝐼2  as well as continuous evolution of copulas. It is remarkable that the convergences 

do not depend on the fineness of mesh 𝑀, but depend only on the number of times 𝑛. 

 

Rank correlation. For any initial copulas  𝐶0  and a sequence of discrete evolution of copulas  {𝐶𝑛(𝑢, 𝑣)}𝑛=1,2,⋯, 

Kendall’s tau (𝜏𝑛) and Spearman’ rho (ρ𝑛) converge to zero exponentially as n → ∞, corresponding to the continuous 

type. 

 

Convergence from discrete to continuous. We proved that discrete evolution copulas converge to continuous evolution 

of copulas as 𝑁 → ∞ and ℎ → 0 uniformly on (𝑢, 𝑣) × 𝑡 ∈ 𝐼2 × (0, ∞). Thus we can treat the discrete evolution of 

copulas as an approximation of the continuous evolution of copulas.  

 

 

3.3 Application to empirical data 

The evolution of copulas has properties to suit events whose dependence monotonically moving. Therefore, we focus 

on rapidly changing events when their directivities are almost stable. We select foreign exchange rates on January 15, 2015, 

when the Swiss franc endured a shock breakout after the announcement that the Swiss central bank had stopped monetary 

𝐶𝑖𝑗
𝑛

𝐶𝑖𝑗
𝑛+1

𝐶𝑖𝑗+1
𝑛

𝐶𝑖−1𝑗
𝑛

𝐶𝑖+1𝑗
𝑛

𝐶𝑖𝑗−1
𝑛
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policy efforts to maintain the Swiss franc against the euro at more than 1.20. Therefore we analyze the dependence of euro–

Japanese yen foreign exchange rates with those of the Swiss franc–Japanese yen.  

First we collect data on the second time scale in order to capture their monotonic directivity. We construct empirical 

copulas of the euro–Japanese yen rates and the Swiss franc–Japanese yen rates for every second of 40 minutes using the 

formula (4). Then, we calculate their Kendall’s tau correlation measure by using the formula (7). We apply a smoothing 

technique, a moving average method, to the transitions of Kendall’s tau, since they fluctuate and include some singular 

data.  

Next we compare Kendall’s tau of the evolution of empirical copulas to the abovementioned moving averages of 

Kendall’s tau of empirical copulas. We choose the start time when Kendall’s tau of the empirical copula and its moving 

average are almost equal. We evolve the empirical copula at the start time using the deference equation (13) for 20 minutes. 

For reference, we plot the results again in Figure 2, which shows that the evolution of empirical copulas approximate the 

smoothed transition of empirical copulas from the viewpoint of Kendall’s tau. See Ishimura, N., & Yoshizawa, Y. [11] and 

Yoshizawa,Y. [23] for the details. 

 

Notes: TauAve600: Moving averages of 600 datasets of Kendall’s tau for every second.  

Evolution of Tau: Kendall’s tau of evolution of copulas. We extract the empirical copula at around 18:30 when the Kendall’s tau of the 

empirical copulas is almost equal to the smoothed Kendall’s tau. We evolve them 1,200 times, which means for 20 minutes. For this 

evolution, we use the deference equation (13) with 𝜆= 
1

5
. 

Data source: Bloomberg, exchange rate. 

Figure 2. Kendall’s tau of evolution of copulas 

 

Using these flexible discrete copula models, we analyze the movement of dependence relations between the Swiss 

franc and the euro against the Japanese yen approximately. We can verify the practicality of some theories of the evolution 

of copulas, although this is restricted to events whose essential dependence does not fluctuate but transforms 

monotonically.  

 

 

4. Generalized evolution of bivariate copulas in discrete processes 

We are then able to generalize the difference equation (13) so that the asymmetrical weight is allowed as 

  𝐶𝑖,𝑗
𝑛+1 = 𝛼𝐶𝑖,𝑗

𝑛 + (𝛽1𝐶𝑖+1,𝑗
𝑛 + 𝛽2𝐶𝑖−1,𝑗

𝑛 + 𝛽3𝐶𝑖,𝑗+1
𝑛 + 𝛽4𝐶𝑖,𝑗−1

𝑛 ),                 (15) 

where 𝛼 > 0, 𝛽𝑘 > 0 (𝑘 = 1,2,3,4), and  𝛼 + ∑ 𝛽𝑘
4
𝑘=1  = 1. 

As for the detail, see Ishimura, N., & Yoshizawa, Y. [9]. 

 

Moreover we generalize this concept to propose the recurrence relation as 

  

𝐶𝑖,𝑗
𝑛+1: = ∑ ∑ 𝛼𝑘,𝑙

𝑛 𝐶𝑖+𝑘,𝑗+𝑙
𝑛

𝐿

𝑙=−𝐿

𝐿

𝑘=−𝐿
,                                                                                 (16) 

for any n,  

𝛼𝑘,𝑙
𝑛 ≥ 0 and  ∑ ∑ 𝛼𝑘,𝑙

𝑛𝐿
𝑙=−𝐿

𝐿
𝑘=−𝐿 = 1  for any L ≤ N, and  

𝐶𝑖,𝑗
𝑛 = 0  for 𝑖 ≤ 0 𝑜𝑟 𝑗 ≤ 0, and 𝐶𝑖,𝑗

𝑛 = 𝑢𝑖  for 𝑗 ≥ 𝑁 and 𝐶𝑖,𝑗
𝑛 = 𝑣𝑗    for 𝑖 ≥ 𝑁. 

 

    First, we propose the recurrence relation (16) succeeds the conditions of copulas, and prove it in the following 

proposition 1.   

0

0.2

0.4

0.6

0.8 Evolution of Tau Tau Ave600
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Proposition 1. If 𝐶𝑖,𝑗
𝑛  satisfies the conditions of copulas (1) and (2), then 𝐶𝑖,𝑗

𝑛+1 defined by the recurrence relation (16) 

also satisfies the conditions of copulas. 

(Proof) 𝐶𝑖+𝑘,𝑗+𝑙
𝑛  satisfies 2-increasing condition and 𝛼𝑘,𝑙

𝑛 ≥ 0 , thus 𝐶𝑖,𝑗
𝑛+1  also satisfies 2-incresing condition. 

𝐶𝑖,𝑗
𝑛+1satisfies the boundary conditions according to its definition (16). Hence 𝐶𝑖,𝑗

𝑛+1 satisfies the conditions of copulas (1) 

and (2). 

∎  

     

Secondly, we introduce the generalized evolution of bivariate copulas in discrete processes, generated by the 

recurrence relation and the interpolation , and prove that they are copulas in the theorem 2. 

 

Theorem 2. (Generalized evolution of bivariate copulas in discrete processes). For any initial copula 𝐶0, there exists a 

sequence of copulas {𝐶𝑛(𝑢, 𝑣)}𝑛=0,1,2,⋯      on (𝑢, 𝑣)   ∈ 𝐼2,which satisfy the system of the recurrence relation (16) at every 

{(𝑢𝑖, 𝑣𝑗)}
𝑖,𝑗=0,1,2,⋯,𝑁

 and the interpolation (16). We can call these copulas 𝐶𝑛(𝑢, 𝑣) as the generalized evolution of 

bivariate copulas in discrete processes, which satisfy 2-increasing condition (1) and boundary conditions (2). 

(Proof) 𝐶(𝑢, 𝑣) is a function from 𝐼2 to 𝐼, because 𝛼𝑘,𝑙
𝑛 ≥ 0 and  ∑ ∑ 𝛼𝑘,𝑙

𝑛𝐿
𝑙=−𝐿

𝐿
𝑘=−𝐿 = 1  for any L ≤ N. 

𝐶𝑖,𝑗
𝑛+1satisfies the boundary conditions by the proposition 1, thus 𝐶(𝑢, 𝑣)  also satisfies the boundary condition. 

We verify 2-increasing condition. Let  𝑢𝑖 ≤ 𝑢1 ≤ 𝑢2 ≤ 𝑢𝑖+1, 𝑣𝑗 ≤ 𝑣1 ≤ 𝑣2 ≤ 𝑣𝑗+1, then using the proposition 1 

𝐶𝑛(𝑢2, 𝑣2) − 𝐶𝑛(𝑢2, 𝑣1) − 𝐶𝑛(𝑢1, 𝑣2) + 𝐶𝑛(𝑢1, 𝑣1) = (𝐶𝑖+1,𝑗+1
𝑛 − 𝐶𝑖+1,𝑗

𝑛 − 𝐶𝑖,𝑗+1
𝑛 + 𝐶𝑖,𝑗

𝑛 ) 
(𝑢2−𝑢1)(𝑣2−𝑣1)

(𝑢𝑖+1−𝑢𝑖)(𝑣𝑗+1−𝑣𝑗)
≥ 0.                                  

Hence we prove that {𝐶𝑛(𝑢, 𝑣)}𝑛=0,1,2,⋯ are copulas. 

∎ 

     

Finally, as an example we show a generalized evolution of bivariate copula in discrete processes, which strengthen 

dependence relations through time, in the following example 3. For simplicity, we omit the interpolation (14).  

 

Example 3. Let N=100, L=2, we set 𝛼𝑘,𝑙
𝑛  as 𝛼2,2

𝑛 = 1 , 𝛼𝑘,𝑙
𝑛 = 0  for k≠ 2 and l ≠ 2 . According to 2-increasing 

properties of 𝐶𝑖,𝑗
𝑛  , the following equation holds as 

𝐶𝑖,𝑗
𝑛+1 = max−𝐿≤𝑘≤𝐿,−𝑙≤𝑙≤𝐿 𝐶𝑖+𝑘,𝑗+𝑙 

𝑛 . 

Thus we confirm that this generalized evolution of copula increase their dependences as time passing. 

 

 

5. Discussion 

In this paper, we extend our previous work, the evolution of bivariate copulas, to the generalized evolution of 

copulas in discrete processes. The traditional evolution of bivariate copulas have the properties to decrease dependence 

monotonically over time, therefore they fit with events whose dependence decrease. Applying the above generalized 

evolution of copula, we can manage the events whose dependences fluctuate. According to the mathematical equation 

(16) with the ideal coefficient 𝛼𝑘,𝑙
𝑛 , we can construct the dependence structure model transforming autonomously through 

time. The difficulty is to assume the proper coefficients 𝛼𝑘,𝑙
𝑛  for any 𝑛, 𝑘, 𝑙. 

Recently theory, technique and computer power for Artificial Intelligence (AI) are increasing their capacities, and 

AI becomes to be used widely. We think that AI, such as machine learning or deep learning, will help to solve the 

difficult problem. We hope that collaboration between the generalized evolution of copulas and AI will contribute to the 

study of various kinds of dependence structures transforming autonomously. 
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